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ABSTRACT 

This article analyses the problem of applying deconvolution techniques to conduction 
calorimeters with the continuous injection of a liquid. An efficient working procedure is 
described which characterizes the calorimeter system by means of three different transfer 
functions obtained using a simple localized constants model. In this way the problem is 
transferred to the field of invariant systems. An example with a signal-to-noise ratio of 80 dB 

is discussed. 

INTRODUCTION 

In recent years the field of application of conduction calorimetry has been 
extended to embrace dynamic measurements to the introduction of decon- 
volution techniques. This has permitted research into systems such as 
oscillating reactions [l] and martensitic phase transformations [2,3]. Accurate 
measurements of liquid mixtures [4-61 are hard to obtain owing to the fact 
that the heat capacity of the calorimeter cell, and with it the transfer 
function of the calorimeter system, changes during the continuous injection 
of the second component, thus preventing treatment on the same lines as 
that of invariant systems. Nevertheless, by defining various transfer func- 
tions instead of a single one, these systems can also be simply and systemati- 
cally handled. 

THE EQUATIONS OF THE MODEL 

The localized constants model [7] is illustrated in Fig. 1. The temperatures, 
E,, of the elements (three in this case) are naturally functions of the time, t. 
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Fig. 1. The three-element model. &(t) (i = 1, 2, 3) are the temperatures of the elements of the 
calorimeter, to is that of the thermostat, C, are heat capacities and R,, are thermal 
resistances. 

The temperature of the thermostat, &,, is constant, as are the thermal 
coupling Plj = l/R;, and the heat capacities C, and C,. The heat capacity of 
the first element varies with time 

c,(t)=cp+uc;t (1) 

where u is the rate of injection of the second component and Ci is its 
specific heat. Assuming that it is only in the first element that heat is 
dissipated, the energy balance of this system in terms of the variables, 

‘i = ti - 507 is given by the differential equations 

w~(t)=c,(t)~+(uc:+P,,+P,,)B,-P,,B, 

0 = c2z - P,,B, + (P,, + P,#, - P& 

o=c~~-P*~~*+(P30+P*~)81 

(2) 

The variable measured directly as the output of the calorimeter in the 
experimental thermogram is 0,. The second and third of the above equations 
may readily be solved for 8, and 8, in terms of this variable 

(3) 

where ajj are constants whose full expressions are given in the Appendix. 
Substitution of these expressions for 8, and 0, in the first of eqns. (2) yields 

d’0, 
WI(t) = c M)dt’ 

r=O 

d’t’, 

i=o 
%dr’ 
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Ai in eqn. (4) depends linearly on time 

A;(t) =/Ii0 +A;11 (5) 

where Ajj are constants whose full expressions are given in the Appendix. 
Equation (4) may thus be broken down in the form 

M+(t) = w:(t) + twf(t) + w:(t) (6) 

where 

W13(t) = uc: C alidt’ 
i=O 

d’e3 = k Ail% 

i=l 

note that w:(t) = dw:( t)/dt. 
Application of the Laplace transformation to eqn. (7) now yields three 

different equations for T3, the Laplace transform of S3 

T,(s) = Hi(s)W[(s); i = 1, 2, 3 (8) 

where IV;’ is the Laplace transform of wi and Hi are three invariant transfer 
functions given by 

H,(s) = l/( A, + A,,s + Az0S2 + A,,s3) 

H2(S)=+H3(S)=l/S(A,, +A*,.S+A3,S2) (9) 

Once these transfer functions are known, the problem of reconstructing 
wi( t) to give the experimental thermogram output is solved by simply 
carrying out three deconvolutions of the invariant type for which satisfactory 
procedures already exist [8-111. 

IDENTIFICATION 

In order to obtain the Aij coefficients and, hence, the transfer functions 
Hi, no more is required than to fit straight lines to measurements of Ai( t) 
for various values of t. If injection of the injected substance is halted at time 
t,, then from that moment on the heat capacity C, has the constant value 
Cp + Kit, (eqn. 1) and eqn. (4) shows that the transfer function of the 
calorimeter is given by 

H(s, tk) = I/[ A, + Ai( + Az(t,)s2 + A&,)s3] (IO) 



This constant transfer function may be identified by any of the standard 
methods [8,12,13] from the decay curve after injection is interrupted or by 
using Joule effects. The values of Ai in terms of the corresponding time 
constants, rj( tk), and sensitivity, S, are given by 

A, = l/S 

After a few “partial” characterizations of this type for different times, t,, a 
straight line can be fitted to Ai so, for each i, values of the Ajj can be 
obtained and, hence, the complete specification of the transfer functions 
(eqn. 9). 

EXAMPLE 

The model illustrated in Fig. 1 was simulated on an HP-9845B computer 
using the values R,, = R,, = 0.07, R,, = R,, = 0.14, C, = 11, C, = 12, C,o = 
Ci = 5 and u = 6.6667 x 10p4. The heat capacity of the first element thus 
varies linearly from 5 to 10 during the 1500-s injection period. The input 
signal employed was 

1-3x10-4~-3x10-st2 O<t<1500 
0 otherwise (12) 

which, qualitatively, is of the type expected in continuous mixing processes. 
The sampling period, T, of the output signal (the thermogram) was 1 s. 
Figure 2 shows the true input signal together with the simulated response, in 
which simulated noise was included to give a signal-to-noise ratio of 80 dB. 

Partial characterizations carried out for different injection times using 
simulated Joule effects [8] produced the values shown in Table 1 for r,( tk) 
and S, and (by eqn. 11) the values of Ai are shown in Table 2. Fitting 
straight lines to these values produced the results 

A, = 0.21 

A, = 58.7498 + 6.66662 x 10-3t 

A, = 2860.71 + 0.964301t 
(13) 

A, = 33673.1 + 22.4500t 

These expressions are of course valid only for 0 < t < 1500 s, after which Ai 
values maintain the fixed values Ai(1500). 

The expressions (13) fully determine the transfer functions (eqn. 9), and 
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Fig. 2. Input power (a) and output thermograms (b) simulated using the model of Fig. 1 

standard deconvolution techniques using the Z transform [8] yield the three 
input power terms of the decomposition (eqn. 6). These are shown in Fig. 3, 
and their sum perfectly reproduces the true input signal (eqn. 12). 

TABLE 1 
Partial characterization parameters obtained for different injection times 

Time S 71 72 73 

(s) 

0 4.7619 221.54 40.233 17.990 

500 4.7619 230.63 43.870 21.131 

1000 4.7619 240.35 47.982 23.174 

1500 4.7619 250.66 52.220 24.501 

TABLE 2 

Values of A, for different injection times 

Time 

(s) 

0 
500 

1000 
1500 

*II -4, A2 A3 

0.210000 58.7502 2860.73 33673.3 

0.210000 62.0825 3342.82 44897.6 

0.210000 65.4163 3825.01 56123.3 

0.210000 68.7501 4307.17 67348.1 
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Fig. 3. The three individual terms of the deconvoluted signal: 
(c) 10X w:(t), whose sum is the total deconvoluted signal. 

(a) w:(t), (b) 10 x twf( t) and 

CONCLUSIONS 

By using three different transfer functions it is possible to establish a 
satisfactory working procedure for the deconvolution of thermograms ob- 
tained in simple continuous injection conduction calorimeters lending them- 
selves to localized constants models. These transfer functions are readily 
calculated by conventional characterization methods. The deconvolution of 
signals obtained from non-invariant systems is thus reduced to three decon- 
volutions of invariant type. In spite of the simplicity of the procedure, the 
results are highly satisfactory, and the nature of the technique suggests that 
it may be successfully generalized to more complicated systems with more 
elements and zeros in their transfer functions. 

APPENDIX 

The aZj constants of eqn. (3) are given by 

pi2 + &,)(40 + &A - p2231 

a11 PP =- c* ~30+~23~+~3~~~2+~23~1 2 ( 
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a 12 =C2G/P,2P23 

a 2. = (Go f P23VP23;a21 = WP23 

The A,j constants of eqn. (5) are given by 

A, = A, = -a20P,2 + alo( P,, + P12); A,, = 0 

Alo = aloCf + all(Plo + PI,) - a2,P12;A,, = alouCi 

A,, = a& + a,,(P,, + P12);A2, = a,,uC: 
0 1 

A,, = a,,C, ;A,, = a12G 
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